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Abstract—Correlated time series forecasting plays an essential
role in many cyber-physical systems, where entities interact
with each other over time. To enable accurate forecasting, it
is essential to capture both the temporal dynamics and the
correlations among different entities. To capture the former, two
popular types of models, recurrent neural networks (RNNs) and
temporal convolution networks (TCNs), are employed. To capture
the latter, a graph is constructed to reflect certain relationships
among entities and then graph convolution (GC) is applied upon
the graph to capture the correlations among the entities. The
state-of-the-art forecasting accuracy is achieved by models that
combine RNNs or TCNs with GC. However, they neither capture
distinct temporal dynamics that exist among different entities nor
consider the entity correlations that evolve across time.

In this paper, rather than proposing yet another new end-
to-end forecasting model, we aim at providing a framework to
enhance existing forecasting models, where we propose generic
plugins that can be easily integrated into existing solutions to
solve the two challenges and thus further enhance their accuracy.
Specifically, we propose two plugin neural networks that are able
to better capture distinct temporal dynamics for different entities
and dynamic entity correlations across time, so that forecasting
accuracy is improved while model parameters to be learned are
reduced. Experimental results on three real-world correlated time
series data sets demonstrate that the proposed framework with
the two plugin networks is able to achieve the above goals.

I. INTRODUCTION

In a complex cyber-physical system (CPS), multiple entities
often interact with each other across time. The continued
developments of sensor technologies enable recording the
time-varying attributes of such entities. This produces multiple
time series which correlate with each other [7]. A road
transportation system is an example of such CPSs, where
an entity corresponds to a road. Different sensors, e.g., loop
detectors or speed cameras, are deployed in different roads
to capture the speeds of the roads (see Figure 1). As traffic
on different roads often affect the traffic on other roads, this
produces multiple, correlated traffic speed time series.

Accurate forecasting of correlated time series plays an
essential role in such CPSs, which helps reveal holistic system
dynamics of the underlying CPSs, including identifying trends,
predicting future behavior, and detecting outliers [17], [18].
These are important to enable effective operations of the CPSs,
e.g., vehicle routing in transportation systems [12], [16], [27].

Accurate correlated time series forecasting relies on models
that are able to capture two essential properties—temporal
dynamics and correlations among different entities.

(a) Speed sensors. (b) Dynamic graph.

Fig. 1: Motivating example.

Temporal dynamics is important because the attributes
of entities, e.g., travel speeds and traffic flows of roads,
change over time and historical attributes influence future
attributes [15]. For example, if a road is congested at 17:00,
resulting in a low speed, the speed of the road may not be
high at 17:10 as the congestion may not disappear in 10 mins.
Thus, an accurate forecasting model must be able to capture
such temporal dynamics by taking into account historical
states when making future predictions. The state-of-the-art
methods for capturing the temporal dynamics utilize deep
neural networks, and can be categorized into two families:
Recurrent Neural Networks (RNNs), e.g., Long-short Term
Memory (LSTM) [13] and Gated Recurrent Unit (GRU) [6], and
Temporal Convolution Networks (TCNs), e.g., WaveNets [24].

Entities in a CPS often interact with each other, such as
traffic at different roads influencing each other. Thus, it is
essential to capture the correlations among the entities to
achieve accurate correlated time series forecasting. To do so, a
graph is a natural choice to establish the topology of entities,
where entities are modeled as vertices and relationships among
entities are modeled as edges and their weights, e.g., based
on Euclidean distance. Graph convolution (GC) [19] captures
entity correlations by convoluting attributes of an entity with
those of its neighbors in the graph topology, so as to obtain
richer features of each entity. The entities represented with
the richer features are utilized by either RNN or TCN families
to enable accurate correlated time series forecasting. This
kind of structures captures both temporal dynamics and entity
correlations, thus yielding the state-of-the-art accuracy [21],
[31], [34]. However, they fail to address two challenges.
Distinct Temporal Dynamics: Traffic at a particular road
evolves across time distinctly. For example, different roads
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may have different peak vs off-peak hours. The roads going
from rural areas downtown may have more traffic in the
morning, whereas the traffic on roads going from downtown
to rural areas may behave oppositely. Thus, the temporal
dynamics of different entities should be modeled distinctively
when forecasting multiple time series.

Existing models do not distinguish temporal dynamics
among different entities and treat their evolution similarly.
Specifically, RNNs and TCNs used by these models apply
entity-invariant filters, meaning that the same set of filters
are used for all entities. Thus, the filters are learned to
capture “average” temporal dynamics of all entities and fail to
distinguish temporal dynamics among the entities. This calls
for entity-specific filters, which apply distinct filters to different
entities and hold the potential to capture distinct temporal
dynamics among entities.
Dynamic Entity Correlations: Traffic on different roads influ-
ences each other and their influential levels may be different
across time. An example can be seen in Figure 1, where traffic
at entity 2 affects entities 1, 3 and 5 at 8 A.M., but traffic at
entity 2 influences entity 5 more and no longer at entity 3
at 9 A.M. This requires a dynamic topology where the edge
between entities 2 and 3 disappears from 8 A.M. to 9 A.M.
In addition, it also requires dynamic edge weights where the
weight between entities 2 and 5 becomes larger. Thus, a pre-
defined and static topology employed in existing studies [21],
[31] is insufficient to capture the dynamic correlations across
entities. This calls for the use of a dynamic graph, when
modeling the entity correlations.

In this paper, we aim at addressing the two challenges.
Rather than proposing yet another end-to-end model, we
propose a general framework EnhanceNet where two proposed
neural network components can be easily plugged into existing
models to enable them to capture distinct temporal dynamics
and dynamic entity correlations, thus significantly improving
time series forecasting accuracy.

We first propose a Distinct Filter Generation Network
(DFGN) to generate distinct filters so as to capture distinct
temporal dynamics of the different entities. We show how we
integrate the proposed DFGN with both RNN and TCN family
models, which not only enhance the prediction accuracy, but
also effectively reduce the total number of parameters to learn.

Second, we propose a Dynamic Adjacency Matrix Genera-
tion Network (DAMGN) to derive dynamic graphs, with which
graph convolution can capture dynamic correlations among
different entities across time. We show that the proposed
DAMGN can be easily integrated with state-of-the-art models,
thus enhancing the forecasting accuracy.

To the best of our knowledge, this is the first study that
proposes generic performance enhancing components for a
wide variety of correlated time series forecasting models. The
study makes four contributions. First, we propose a Distinct
Filter Generation Network to generate distinct filters to capture
distinct temporal dynamics. Second, we propose a Dynamic
Adjacency Matrix Generation Network to derive dynamic
adjacency matrices across time. Third, we integrate the two

proposed components into popular forecasting modeling, in-
cluding RNN family and TCN family. Fourth, We conduct
extensive experiments using three real-world correlated time
series data set to offer insight into the design choices.
Paper Outline: Section II covers related work. Section III de-
fines the problem and presents a system overview. Sections IV
and V elaborate on the two plugins for enhancing temporal
dynamics and entity correlations, respectively. Sections VI
shows experimental studies and Section VII concludes.

II. RELATED WORK

We review studies on correlated time series forecasting from
two aspects—the temporal dynamics and entity correlations.
We also cover related work on filter generation.
Temporal dynamics: Capturing temporal dynamics is es-
sential for time series forecasting. Various studies show that
deep learning models are able to outperform non-deep learning
methods [21]. Recurrent Neural Networks (RNNs) [11] and
Temporal Convolution Networks (TCNs) [20] are the two most
commonly used architectures for the purpose. RNNs extend
feedforward neural networks by introducing hidden states to
model time series step-by-step, i.e., recursively. The hidden
states encodes knowledge from historical steps making RNNs
is able to capture temporal dependencies among different
steps. TCNs extend classic convolutional neural networks.
Specifically, dilated causal convolution is applied, which only
considers historical information up to the current timestamp,
making it is possible to take into account temporal dependen-
cies. WaveNet is an advanced TCN with gating mechanism,
which offers good accuracy [24].

However, existing studies that use RNNs and TCNs employ
the same filers for different entities, and therefore they fail
to capture distinct temporal dependencies among different
entities [21], [31], [34]. Naively using different filters for
different entities require a very large parameter space and it
does not scale w.r.t. the number of entities. To address this
problem, we propose a distinct filter generation network to
generate distinct filters for different entities while making the
parameter space small.
Filter Generation: Filter generation has been studied for
image recognition and object detection [5], [9], [32], which do
not consider temporal dynamics. We consider filter generation
for two model families that are able to capture temporal
dynamics, i.e., RNNs and TCNs. Differently from the existing
studies that the filter generator conditions on the input data,
we introduce entity-specific, learnable memories to generate
entity-specific filters. We offer empirical evidence to justify
our design choice (see Figures 10 and 11 in Section VI).
Entity correlation: We categorize how existing studies
capture entity correlations w.r.t. two dimensions. The first
dimension considers if the correlations are pre-computed based
on prior knowledge or it is learned from the training data.
Some studies [4], [21] employ an adjacency matrix that is
pre-computed using the distances among the entities to capture
the correlations, and some methods employ a grid to partition
the whole space and then capture the correlations among the
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Fig. 2: Framework overview.

grid cells [29]. In contrast, Graph WaveNet [31] learns an
adjacency matrix from the input data, which could capture
correlations between two entities that are not captured by a
pre-computed adjacency matrix.

The second dimension considers if the correlations may
change over time, i.e., static vs. dynamic. Most existing studies
consider static correlations [14], [22], [30], [31], including
Graph WaveNet where the learned adjacency matrix is still
static. Graph attention is applied to modify the weights of a
given adjacency matrix, meaning that the weights are dynamic,
but not the topology [8], [25]. In this paper, we fill in the
gap by proposing a Dynamic Adjacency Matrix Generation
Network that is able to identify dynamic typologies and also
dynamic weights, which are both learned from the input data.

III. PRELIMINARIES

A. Problem Definition
We consider a cyber-physical system with N entities, each

of which is associated with a time series. The time series
captures the attributes of the entity cross T timestamps, where
each timestamp is associated with C attributes. Then, we
use X ∈ RN×C×T to represent the time series of the N
entities. Consider the example shown in Figure 1. Each entity
represents a sensor, and we have N = 5 entities. A sensor
captures C ≥ 1 attributes of the corresponding road, e.g.,
speed and traffic flow, at each timestamp. We denote the time
series from the i-th entity as x(i) ∈ RC×T ; we use xt ∈ RN×C
to represent the time series of all the N entities at timestamp
t, where each entity has C features; and we use x

(i)
t ∈ RC to

represent the attribute vector of the i-th entity at timestamp t.
Correlated time series forecasting takes as input the past H

timestamps and predicts the future F timestamps: XH → XF ,
where XH = [xt−H+1, . . . ,xt−1,xt] ∈ RN×C×H , XF =
[xt+1,xt+2, . . . ,xt+F ] ∈ RN×C×F , and t is current time.

B. System Overview
The framework overview is shown in Figure 2, which

consists of two parts: Correlation Time Series Forecasting
Models and EnhnaceNet. For the part of Forecasting Models,
the framework supports various existing time series forecasting
deep neural network models, ranging from models that explore
the temporal dynamics of time series, such as the Recurrent
Neural Network RNN family and the Temporal Convolution
Network TCN family, to models that consider entity correla-
tions in addition to the temporal dynamics, such as kinds of
variations of graph convolution.

EnhnaceNet consists of a temporal plugin and a correlation
plugin for enhancing temporal dynamics and entity correla-
tions, respectively. The temporal plugin generates distinct fil-
ters for different entities, such that unique temporal dynamics
lying in different entities can be captured distinctively. The
correlation plugin produces dynamic adjacency among differ-
ent entities across time to capture time-dependent correlations.

IV. ENHANCING TEMPORAL DYNAMICS

We introduce two most commonly used model families
that capture temporal dynamics—Recurrent Neural Networks
(RNNs) [11] and Temporal Convolution Neural Networks
(TCNs) [20]. After analyzing their limitations on modeling
distinct temporal dynamics for different entities, we propose
a Distinct Filter Generation Network, which yields distinct
filters to enable both model families to capture distinct tem-
poral dynamics of individual entities, and thus enhance their
forecasting accuracy.

A. Recurrent Neural Networks
RNNs are a type of neural networks that take into ac-

count historical information of a time series to enable future
predictions [11]. Figure 3 shows the architecture of an RNN
composed by a sequence of RNN units.

Fig. 3: A Recurrent Neural Network.
Equation 1 formalizes an RNN unit, where the input includes

an attribute vector xt ∈ RC observed at timestamp t and a
hidden state ht−1 ∈ RC′

from the previous RNN unit, and the
output is a new hidden state ht ∈ RC′

for timestamp t.
ht = RNN (xt,ht−1). (1)

A hidden state is an abstraction that encodes useful histori-
cal knowledge of attribute vectors up to the current timestamp
in the time series, and is helpful for leveraging the accuracy of
future predictions. Different prediction models can be applied
on top of the last hidden ht. The prediction model can be a
fully connected neural network and can also be another RNN,
making it an encoder-decoder architecture [21]. We then apply
a standard loss function to measure the discrepancy between
the predictions and the ground truth, making it possible to use
back propagation to learn the model parameters.

Various implementations of RNNs exist. We use a simple
yet effective version, Gated Recurrent Unit (GRU) [6], as an
example to discuss the specifics. We proceed to consider a
single time series from one entity and then multiple time series
from different entities, resulting in GRU defined differently.

1) Single Time Series: We consider the time series from
entity i. A GRU unit is given in Equation 2. Input x(i)

t ∈ RC
is the attribute vector at timestamp t from entity i, and W ∈
R(C′×C) and U ∈ R(C′×C′) are the weight matrices (a.k.a.,
filters), to be learned through back propagation.

h
(i)
t = GRU (x

(i)
t ,h

(i)
t−1|W,U). (2)
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(a) Using same filters for all entities. (b) Using distinct filters with DFGN. (c) Using adjacency matrix with DAMGN.

Fig. 4: The fundamental operation in RNNs.

The specific computations inside a GRU unit are shown below.

rt = σ(Wrx
(i)
t + Urh

(i)
t−1), (3)

ut = σ(Wux
(i)
t + Uuh

(i)
t−1), (4)

ĥt = ø(Whx
(i)
t + Uh(rt � h

(i)
t−1)), (5)

h
(i)
t = ut � h

(i)
t−1 + (1− ut)� ĥt. (6)

where h
(i)
t−1,h

(i)
t ∈ RC′

are hidden states, � represents the
element-wise multiplication, weight matrices Wr,Wu,Wh ∈
RC′×C , Ur,Uu,Uh ∈ RC′×C′

, σ(·) is the sigmoid function,
and ø(·) is a non-linear activation function, e.g., tanh .

A GRU employs a reset gate rt, shown in Equation 3, to
decide how much information should be forgotten from the
previous timestamp. A similar gate ut, called update gate, is
computed using Equation 4. Both the reset and update gates
control how much information from the history should be
considered in order to make future predictions. Specifically,
the GRU computes an internal state ĥt that takes as input x(i)

t

and h
(i)
t−1, and uses the reset gate rt, as shown in Equation 5.

In Equation 6, the GRU uses the update gate ut to combine the
internal state ĥt and the hidden state h

(i)
t−1 from the previous

timestamp, and it outputs hidden state h
(i)
t . By doing this, the

GRU remembers historical hidden states that are relevant to
future predictions and forgets those that are irrelevant.

As we could see, the fundamental operation in GRU, as well
as in other RNN versions, is a matrix multiplication between
an input, e.g., an attribute vector x

(i)
t or a hidden state h

(i)
t ,

and a filter, e.g., Wr, Wu, Wh, Ur, Uu, or Uh.
2) Multiple Time Series: We consider the time series for

all N entities, upon which the GRU is defined as:

ht = GRU (xt,ht−1|W,U), (7)

where xt ∈ RN×C and ht−1,ht ∈ RN×C′
correspond to N

entities. Thus, their sizes are N times of x
(i)
t and h

(i)
t−1 used

in Equation 2. Similarly, the filters W ∈ RN×C×C′
and U ∈

RN×C′×C′
are also N times of filter sizes used in Equation 2.

Existing studies often apply the same filters to multiple time
series from different entities. Figure 4(a) illustrates the idea for
the fundamental GRU operation between an input time series
xt ∈ RN×C at timestamp t and a filter W ∈ RN×C×C′

.
Given the input time series xt that covers all N entities,
the filter W consists N copies of the same, smaller filters
W ∈ RC′×C′

used in Equation 2. As the filters are the same
among different entities, we are unable to capture distinct
temporal dynamics among different entities. The learned filters
W represent “average” temporal dynamics over all entities.
This leads to inaccurate forecasting.

Next, a straightforward way to capture distinct temporal
dynamics among different entities is to use distinct filters for
each entity. This means that each entity has a distinct set of
filters, including three filters W

(i)
r , W

(i)
u , W

(i)
h ∈ RC′×C

and another three filters U
(i)
r , U

(i)
u , U

(i)
h ∈ RC′×C′

. Thus,
the filters in a GRU unit in total has N · 3 · C ′ · (C + C ′)
parameters, where N is number of entities, C and C ′ is the
size of an attribute vector and the size of a hidden state
in a time series at a timestamp, respectively. C ′ is usually
set to be large, e.g., 64, in order to make the hidden states
well capture historical knowledge from time series. When N
is getting large as well, the number of parameters to learn
becomes overwhelming, thus resulting in the increase of model
complexity and consuming large memory. The straightforward
manner is often infeasible in real world settings.

This calls for a more effective method to obtain these
parameters. We propose a Distinct Filter Generation Network
in Section IV-C to achieve this goal.

B. Temporal Convolution Networks

A temporal convolution network (TCN) is a hierarchical
model that consists of multiple layers of dilated causal convo-
lutions to explore the temporal relationship of time series [20],
[24]. Figure 5 shows the architecture of a TCN with 3 layers
of dilated casual convolutions. The output of the last layer is a
representation that captures temporal dynamics in the history,
which enables predictions. Similar to RNN, a prediction model,
e.g., a fully-connected neural network, can be used on top
of the output of the last layer to make predictions. Using
a loss function that measures the discrepancy between the
predictions and the ground truths, standard back propagation
enables learning the model parameters.

Fig. 5: Temporal Convolution Network, K = 2.
1) Single Time Series: We model the time series from an

entity i using a TCN with l layers. To explain how a dilated
causal convolution works, we first introduce two concepts—
convolution filter size K and dilation factor d. Dilated causal
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convolution works by convoluting K attribute vectors from K
different timestamps, and attribute vectors to be convoluted
are d timestamps apart. At different layers, K is often the
same, while d may be different. For example, Figure 5 shows a
TCN with K = 2, meaning that the dilated causal convolution
always convolutes two attribute vectors from two timestamps.
The dilation factors d in the 1st, 2nd, and 3rd layers are 1, 2,
and 4, respectively. Thus, in the 1st layer, the two attributes
vectors to be convoluted are 1 timestamp apart; in the 2nd

layer, 2 timestamps apart; in the 3rd layer, the 4 timestamps
apart, as shown in Figure 5.

We proceed to introduce the dilated causal convolution on
time series x(i) from entity i, as shown in Equation 8.

x(i) ?t F
(i) =

C∑
c=1

K=2∑
k=1

F(i)[k, c]� x
(i)
t−d×(k−1)[c], (8)

where ?t represents a convolution operation at timestamp t,
� is element-wise multiplication, and F(i) ∈ RK×C is the
convolution filter.

Similar to traditional convolutional neural networks, where
multiple filters are utilized, a TCN also uses multiple filters. In
addition, the TCNs in different layers often use different sets
of filters, defined in Equation 9.

H = TCN (x(i)|F(i)
1 ,F(i)

2 , . . . ,F(i)
L ). (9)

where F(i)
l ∈ RC′×K×C represents a set of C ′ dilated causal

convolution filters at layer l.
2) Multiple Time Series: When modeling multiple time

series with TCNs, we could use the same set of filters for all
entities, but this limits the effectiveness of capturing potential
distinct temporal dynamics. Otherwise, we could use a distinct
set of filters for each entity, but, similar to RNNs, we can
hardly afford it. For example, if we have L layers in total, we
have to learn a total of

∑L
l=1N ·C ′l ·Cl ·K parameters in the

filters, where Cl and C ′l is the size of the input vector and the
number of filters at layer l, respectively. The value of C ′l can
be large. This setup leads to huge memory consumption and
inefficient training.

C. Distinct Filter Generation Network

To capture distinct temporal dynamics in a concise manner,
we first enrich each entity with a m-dimensional memory
vector M(i) ∈ Rm, with i ∈ [1, N ]. The memory is randomly
initialized but trainable. Thus, the memory is able to remember
entity specific temporal dynamics, and it is fed into a Distinct
Filter Generation Network (DFGN) to generate a set of entity-
specific filters W(i) for each entity i. Specifically,

W(i) = DFGN (M(i)).

W(i) is dependent on the underlying models, e.g., RNNs
vs. TCNs. We empirically examine the learned memories in
Section VI.

The DFGN is an abstraction of a learning model, which can
be implemented in different ways. Without loss of generality,

we employ a simple feed-forward neural network with two
hidden layers as the DFGN, as shown in Figure 6. Other types
of neural networks, such as convolutional neural networks, can
be applied as well.

Fig. 6: Distinct Filter Generation Network (DFGN).

Although different entities have different memories, we only
have one DFGN. For each entity i, we initialize a trainable
memory M(i) whose size is m and can be set as a small value.
As all entities share a DFGN, we only need to learn a single
set of parameters in DFGN for all entities. This significantly
reduces the training complexity.

We provide an analysis on the number of parameters to be
learned. Assume that each entity has a memory M(i) with the
same size m, giving rise to a total of N · m parameters to
be learned. For the DFGN, the input layer consists m neurons
(see Figure 6), corresponding to an entity’s memory. Assuming
that the two hidden layers in DFGN have n1 and n2 neurons,
respectively. The output layer has o neurons, corresponding to
the filters for the entity. Here, o varies when using RNN vs.
TCN and we cover the specifics later. Thus, we need a total
of N ·m+m · n1 + n1 · n2 + n2 · o parameters.

We proceed to describe how to integrate DFGN with RNNs
and TCNs, respectively.

1) Distinct Recurrent Neural Network: Recall that the
fundamental operation in an RNN unit is the multiplication
between an input and a filter. Figure 4(b) illustrates the main
ideas of using DFGN to conduct this operation. For each
entity, its memory M(i) is fed into the DFGN, which outputs
entity-specific filters. Specifically, when using a GRU unit, the
DFGN outputs six filters, i.e., W(i)

r , W(i)
u , W(i)

h , U(i)
r , U(i)

u ,
and U

(i)
h , for entity i to be used in Equations 3 to 6.

Formally, we define distinct recurrent neural network
(D-RNN) in Equation 10. Figure 7 shows the architecture of
a D-RNN.

W(i),U(i) = DFGN (M(i))

h
(i)
t = GRU (x

(i)
t ,h

(i)
t−1|W(i),U(i)).

(10)

We examine the number of parameters to configure the
DFGN for RNNs. Here, we have o = 3C ′ · (C + C ′) due
to three filters W

(i)
r , W

(i)
u , W

(i)
h ∈ RC′×C and another

three filters U
(i)
r , U

(i)
u , U

(i)
h ∈ RC′×C′

. In total, we have
N ·m+m · n1 + n1 · n2 + n2 · (3 ·C ′ · (C +C ′)) parameters.

We now have three methods for capturing temporal dy-
namics. The naive method, where all entities share the same
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Fig. 7: Distinct Recurrent Neural Network.

sets of filters, requires learning 3 · C ′ · (C + C ′) parameters.
The straightforward method for capturing distinct temporal
dynamics requires N · (3 · C ′ · (C + C ′)) parameters, where
N and C ′ are usually big. DRNN requires fewer parameters
than the straightforward method, because DFGN is a small
neural network where n2 is often set much smaller than N .
Further, DRNN could use a much smaller C ′ value than does
the naive method without losing accuracy, thus requiring even
fewer parameters than the naive method.

2) Distinct Temporal Convolution Network: In a TCN, the
filters used in different dilated causal convolution layers aim
to capture different granularity of temporal dynamics. Thus, if
the TCN has l layers, we use l DFGNs to generate filters for
different layers, as shown in Figure 8.

Fig. 8: Distinct Temporal Convolution Network, K = 2.

Formally, we define Distinct Temporal Convolution Net-
work in Equation 11.

F
(i)
l = DFGN l(M

(i))

H = TCN (x
(i)
t |F

(i)
1 ,F(i)

2 , . . . ,F(i)
l ),

(11)

where DFGN l is the DFGN for the l-th layer. As shown in
Figure 8, for each layer, we use a unique DFGN to generate
unique sets of filters, while the inputs to the different DFGNs
at different layers come from the same memory vector M(i).

Next, we investigate the total parameters required by using
DFGNs. At each layer, the total number of parameters o =
C ′l ·Cl·K. Thus, in total, we have

∑L
l=1(m·n1+n1·n2+n2·C ′l ·

Cl ·K). This is significantly smaller than the straightforward
method. In addition, except the entity memories, the number
of parameters used in the DFGNs does not increase with the
number of entities N , thus more scalable w.r.t. N .

V. ENHANCING DYNAMIC CORRELATIONS

A. Entity Correlations
Capturing correlations among time series of different enti-

ties is essential to ensure forecasting accuracy. Existing studies

model relationships among the entities as a graph, where
a vertex represents an entity and an edge represents some
relationship between two entities. For example, two entities
are connected by an edge if their distance is smaller than a
threshold. The graph is represented by an adjacency matrix.

Graph convolution (GC) [19] is applied on a graph to
capture the features of an entity by aggregating and trans-
forming those of its neighbors, so that influence upon the
entity from correlated entities is taken into account. Although
different variations of graph convolution exist, such as graph
convolution [3], diffusion convolution [1], and spectral graph
convolution [10], they all follow the same principle which can
be represented in Equation 12.

Z = S ?G xt = AxtS, (12)

where ?G represents a GC operator, and it applies to an
adjacency matrix A ∈ RN×N , a graph signal xt ∈ RN×C
denoting the C attributes of all N entities at timestamp t,
and a graph convolution filter S ∈ RC×C′

. Z ∈ RN×C′
is

the output where each entity has C ′ attributes that incorporate
attributes from its neighbors.

If we want to consider up to k-hop neighbors, we could
replace the adjacency matrix A with Ak in Equation 12. We
can also use different adjacency matrices to represent incoming
neighbors and outgoing neighbors to better capture incoming
and outgoing traffic flows [21].

Existing GC methods utilize a static adjacency matrix A,
and thus fail to capture entity correlations that may change
over time, as shown in Figure 1. To address this limitation,
we propose a Dynamic Adjacency Matrix Generation Network
(DAMGN) to generate a unique adjacency matrix at each
timestamp, so that these adjacency matrices together can
capture the dynamic entity correlations across time.

We proceed to elaborate the specifics of DAMGN, then
we describe how to integrate GC into time series forecasting
models to enable accurate correlated time series forecasting.

B. Dynamic Adjacency Matrix Generation Network

The adjacency matrix derived from distances is sub-optimal
because (1) it is static and fails to capture time-varying
correlations; and (2) it is data-independent, and thus incapable
to capture, for example, correlations between entities that are
far away but still show correlations.

To address the above limitations, we utilize DAMGN to
generate dynamic and adaptive adjacency matrices. It is dy-
namic since unique adjacency matrices at different timestamps
are generated. It is adaptive since the adjacency matrices
are derived from the input time series, which may potential
capture any correlations, but not just based on, e.g., distances.
Specifically, the DAMGN generates a new adjacency matrix

A′ = λAA + λBB + λCC, (13)

where A is the original adjacency matrix, e.g., derived from
distances; B is a global adaptive adjacency matrix for cap-
turing static correlations which cannot be captured by A; and
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C is a time-specific adaptive adjacency matrix that is derived
from the time series data at a particular timestamp. Finally,
the three matrices A, B, and C are linearly combined with
learnable parameters.

When using the new adjacency matrix A′, we are able to
reformulate graph convolution in Equation 14.

Z = S ?G xt = (λAA + λBB + λCC)xtS (14)

We proceed to cover the specifics of the DAMGN. The
architecture of DAMGN is shown in Figure 9.

Fig. 9: Dynamic Adjacent Matrix Generation Network (DAMGN).
Generating B: Adaptive adjacency matrix B ∈ RN×N
is intended to capture hidden correlations among different
entities, which cannot be captured by, e.g., distance based
adjacency matrix A.

Here, we could have initialized a learnable matrix B with
the size of N ·N , but this brings in N2 additional parameters,
making the training unscalable, w.r.t. N , i.e., the number
of entities. Instead, we follow an idea that is similar to the
entity-specific memories used in the distinct filter generation
network. We introduce two small memory matrices B1,B2 ∈
RN×M , which could be interpreted as a source vertex memory
and a target vertex memory. Note that M � N . Thus, we only
need to introduce 2 · N ·M additional parameters and scale
well with N . Specifically, we derive adjacency matrix B as
follows.

B = Softmax (ReLU (B1B
T
2 )) (15)

We use ReLU to remove weak correlations and BT
2 indicates

the transpose of matrix B2.
Generating C: Adjacency matrix C ∈ RN×N represents a
time-specific adjacency matrix, which aims at capturing cor-
relations among entities at a specific timestamp. Specifically,
C[i, j] captures how much entity i is affected by entity j at a
specific timestamp t.

To this end, We use the normalized embedded Gaussian
function to capture the correlation between x

(i)
t of entity i

and x
(j)
t of entity j at timestamp t, as shown in Equation 16.

C[i, j] = f(x
(i)
t ,x

(j)
t ) =

eθ(x
(i)
t )Tφ(x

(j)
t )∑N

j=1 e
θ(x

(i)
t )Tφ(x

(j)
t )

. (16)

Equation 16 resembles the attention mechanism. We first use
two embedding functions θ and φ to perform a linear trans-
formation on the data between entities i and j. Specifically,
an embedding function multiplies an input data by a weight

matrix to generate a linearly transformed data. We use two
embedding functions because we want to distinguish source
and target vertices, which enables us to capture asymmetric
correlations between two entities.

When combining the three adjacency matrices A, B and
C, we decide to use a weighted sum, where each adjacency
matrix has its own parameter λ that controls its contribution
to the final adjacency matrix. Usually, such λs are hyper-
parameters but in our case instead of manually tuning them
we decide to let the network learn them, thus each λ is a
learnable parameter. Having such parameters also ensures that
the learned adjacency matrix should be at least as powerful as
the original graph convolution using only A—when λB and
λC are 0, it reduces to a normal graph convolution.

C. Correlated Time Series Forecasting

The state-of-the-art accuracy on correlated time series fore-
casting is achieved by integrating graph convolution (GC)
into a model that capture temporal dynamics, e.g., RNNs and
TCNs, which give rise to graph convolution RNNs (GRNNs)
and graph convolution TCNs (GTCNs). We proceed to cover
such integrations on the two models.

1) Integrating GC into RNNs: Integrating GC into RNNs
happens inside RNNs. If we take a GRU unit as an example,
the fundamental operation is the matrix multiplication between
an input matrix and a weight matrix. To integrate GC, we
replace the matrix multiplication in Equations 3, 4, 5 by the GC
operator ?G . As an example, after the replacement, Equation 3
becomes rt = σ(Wr ?G xt +Ur ?G ht−1). Equations 4 and 5
can be updated similarly.

The replacement is reasonable because an input matrix,
no matter it represents attributes in the time series or a
hidden state, it can be formulated into a graph signal, where
each row represents the features of an entity. After replacing
matrix multiplication by GC, a GRNN is able to capture the
correlations among entities when make forecasting.

Figure 4(c) illustrates the main ideas of using DAMGN with
graph convolution in RNNs.

2) Integrating GC into TCNs: Integrating GC into TCNs
happens at each layer, after the dilated causal convolution is
done. Specifically, when a causal convolution finishes com-
putations according to Equation 8, we then apply GC on the
output of Equation 8. More specifically, the computation can
be represented as: xl = S ?G xl−1, where xl−1 represents the
output of Equation 8 at the (l − 1)-th layer, and S is a graph
convolution filter. The computation result xl is fed into the
next layer, i.e., the l-th layer.

This GC integration is also reasonable as the output of
Equation 8 can also be formulated into a graph signal, where
each row represents the convoluted features of an entity.

VI. EXPERIMENTAL STUDIES

A. Experimental Setup

Data Sets: We verify the proposed EnhnaceNet framework
for correlated time series forecasting on three public time
series data sets from two different domains. In data sets EB
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and LA, traffic sensors are the entities, and in data set US,
meteorological stations are the entities.
• EB includes 182 traffic sensors in the East Bay area,

obtained from California Transportation Agencies Perfor-
mance Measurement System1. It covers 3 months from
1 January 2017 to 31 March 2017 and every 5 minutes
we have an average speed reading from each sensor, i.e.,
only C = 1 attribute.

• LA includes 207 traffic sensors across Los Ange-
les County highways, which is released by a recent
study [21]. It covers 4 months from 1 March 2012 to 30
June 2012 and every 5 minutes we get C = 2 attributes:
an average speed and information on time and date.

• US includes 36 meteorological stations in the United
States2, covering 5 years from 2012 to 2017. Every hour
we get C = 6 attributes: temperature, humidity, pressure,
wind direction, wind speed, and weather description.

The three datasets are split chronologically into 3 partitions—
70% for training, 10% for validation, and 20% for testing.
Forecasting setting: We consider a correlated time series
forecasting problem XH → XF , which is defined in Sec-
tion III. We consider a commonly used setting [21], [31],
where we use recent H = 12 timestamps as input to predict the
next F = 12 timestamps. Following existing studies [21], [31],
we report the accuracy at the 3rd, 6th, and 12th timestamps,
corresponding to predictions in 15 mins, 30 mins, and 1 hour
for the two traffic data sets EB and LA and predictions in 3,
6, and 12 hours for the weather data set US.
Graph Adjacency Matrix A: We follow existing studies to
construct a graph, i.e., generating A, using distances between
entities [21], [31]. For the traffic datasets we compute the road
network distances while for the weather dataset we compute
the Eucledian distance of entitiy pairs to construct adjacency
matrix A using a Gaussian kernel. The weight of the edge
between sensors i and j is Aij = exp−dist(vi,vj)

2

σ2 , where
dist(vi, vj) is the distance between entities i and j and σ is
the standard deviation of distances. We set Wij = 0 if it is
smaller than a threshold, which is set to 0.1 in the experiments.
Experiment Design: To verify our proposed plugin networks,
we design two sets of experiments. First, we focus on eval-
uating the effects of the Distinct Filter Generation Network
(DFGN) and Dynamic Adjacency Matrix Generation Network
(DAMGN). More specifically, We select four base models.
• RNN: An encoder-decoder RNN model with GRU

units [28], where the prediction model also uses a GRU
(cf. Section IV-A).

• TCN: An advanced TCN model called WaveNet [24],
which applies additional gating mechanism after dilated
causal convolutions.

• GRNN: An encoder-decoder RNN model with modified
GRU units with ordinary graph convolution (GC) [21].

• GTCN: Based on WaveNet, where ordinary GC is applied
after the causal convolution at each layer [31].

1http://pems.dot.ca.gov/
2https://www.kaggle.com/selfishgene/historical-hourly-weather-data

For the above base models, all entities use the same set
of filters, i.e., the naive method (cf. Section IV). Following
existing studies [21], [31], the ordinary GC in GRNN and GTCN
employ two distance-derived, static adjacency matrices, repre-
senting both incoming and outgoing neighbors. In addition,
we consider neighbors up to 2 hops.

Since RNN and TCN only captures temporal dynamics, we
evaluate how DFGN is able to improve RNN and TCN. More
specifically, we consider two models:
• D-RNN: RNN with DFGN.
• D-TCN: TCN with DFGN.
Next, GRNN and GTCN capture both temporal dynamics and

entity correlations, we evaluate how both DFGN and DAMGN
may enhance accuracy. More specifically, we consider six
additional models.
• D-GRNN: GRNN with only DFGN.
• DA-GRNN: GRNN with only DAMGN.
• D-DA-GRNN: GRNN with both DFGN and DAMGN.
• D-GTCN: GTCN with only DFGN.
• DA-GTCN: GTCN with only DAMGN.
• D-DA-GTCN: GTCN with both DFGN and DAMGN.

We regard the first set of experiments as an ablation study.
Second, we compare the final models, i.e., D-DA-GRNN

and D-DA-GTCN with multiple baselines including the state-
of-the-art.
• ARIMA [2]: Auto-Regressive Integrated Moving Average

model with Kalman filter. A non-deep learning baseline.
• LSTM [13]: Another popular RNN structure with long-

short term memory (LSTM) units. Like GRU, an encoder-
decoder architecture is used to make predictions.

• WaveNet [24]: The same with TCN.
• DCRNN [21]: Diffusion convolution recurrent neural net-

work. It is the state-of-the-art model for correlated time
series forecasting in the RNN family.

• STGCN [34]: Spatial-temporal graph convolution net-
work that combines 1D convolution with GC in a non-
hierachical way.

• Graph WaveNet [31]: The state-of-the-art model for
correlated time series forecasting in the TCN family. It
also achieves the best accuracy so far.

We do not include ST-MetaNet [25] because ST-MetaNet
employs additional prior knowledge such as POIs, whereas
all the above methods do not. In addition, the accuracy of
ST-MetaNet is worse than Graph WaveNet.
Evaluation Metrics: We consider both accuracy and model
complexity. For accuracy, we follow existing literature to
report mean absolute error (MAE), root mean square error
(RMSE), and mean absolute percentage error (MAPE) [21],
[31]. For model complexity, we report the total number of
parameters to be learned for each model.
Model Configurations: For RNN based models, we use
encoder-decoder architectures, with 2 GRU layers stacked on
each other. All GRU units use C ′ = 64. We train all models
using an initial learning rate of 0.01 which reduces 1

10 every
10 epochs starting with the 20th epoch for a maximum of 100

1746

Authorized licensed use limited to: Nanyang Technological University. Downloaded on December 09,2021 at 09:28:43 UTC from IEEE Xplore.  Restrictions apply. 



iterations. In addition, scheduled sampling is used. Existing
studies suggest the above setting is effective [8], [21].

For TCN based models, we stack L = 8 layers, where the
layers have dilation factors of 1, 2, 1, 2, 1, 2, 1, and 2. We
set the causal convolution filter size K = 2, with a total of
C ′ = 32 filters. We train the models using a fixed learning
rate of 0.001 and a dropout of 0.3. We use this setting since
an existing study suggests this setting is effective [31].

For DFGN, we use a 2-layer fully connected network,
with n1 = 16 and n2 = 4 neurons. We randomly initialize
each entity’s memory with size m = 16 using a uniform
distribution. For DAMGN, we set M = 10 to initialize the
memory matrices B1 and B2 (cf. Section V-B).
Implementation Details: We implement all models on
Python 3.7.3 using PyTorch 1.3.1. The experiments are
conducted on a computer node on the CLAAUDIA cloud
(www.claaudia.aau.dk), running Ubuntu 16.04.6 LTS, with one
Intel(R) Xeon(R) CPU @2.50GHz and one Tesla V100 GPU
card. The source code of all models will be made public
available upon acceptance.

B. Experimental Results

1) Effectiveness of DFGN: To justify our design choice
on having distinct filters for different entities, we design
experiments in which we compare a modle without the DFGN
vs. the same model with DFGN.
Accuracy enhancement on RNN and TCN: Table I reports
the results on RNN and TCN. The results are first grouped per
data set. For each data set, the results are further grouped into
RNN vs. TCN based models. For each data set, we use bold
to highlight the lowest errors, suggesting the best prediction
accuracy. Within each model family, we use underline to show
the lowest error among the same family.

We consider the first data set EB. We can see that the error
values for D-RNN are always with underlines, suggesting that
they are smaller than those of RNN. Thus, D-RNN improves
accuracy over RNN. For TCN family, we observe the same
pattern—D-TCN outperforms TCN in all settings. Finally, the
bold values are shown either D-RNN and D-TCN, meaning
that the DFGN enhanced models achieve the best results.

For the other two data sets LA and US, we see similar
trends. Thus, we conclude that DFGN is able to enhance the
forecasting accuracy for both RNNs and TCNs.
Model Complexity: We report the number of parameters for
each model in the “# Para” column in Table I. The model with
DFGN requires significantly less parameters. This is because
we can use smaller generated filters while maintaining high
accuracy. For example, for RNN we need to use C ′ = 64. In
contrast, for D-RNN, we use C ′ = 16, which is already more
accurate than RNN.
Memories Learned from DFGN: Next, we investigate
what DFGN eventually learns. To do this, we examine the
learned memory for each entity from the DFGN. We apply
t-SNE [23] to compress each entity’s memory learned by
D-TCN from m = 16 to 2 dimensions, shown in Figure 10.
The memories of different entities are spread over the 2D

space. This indicates that each entity has a distinct memory,
and thus the DFGN is able to generate distinct filters to capture
various temporal patterns for different entities. Using the same
filters for all entities fail to capture such distinct temporal
dynamics, which give less accurate results as shown in Table I.

Next, we investigate nearby memories in Figure 10. We use
four different colors to highlight 4 clusters of nearby memories
in Figure 10. We map the locations of the corresponding
entities, i.e., sensors, on a map shown in Figure 11 using the
same color. We observe that each memory cluster represents a
group of sensors that are along a short segment of a highway,
which are supposed to have similar temporal dynamics.

In addition, we observe that the red and black sensors in
Figure 11 are nearby. However their memories captured by
DFGN are further apart (see Figure 10), meaning that although
the sensors are close to each other, they exhibit different
temporal patterns, e.g., due to that the black ones are on a
north-south road while the red ones are one a west-east road.

We conclude that DFGN is effective because it is able to (1)
capture distinct temporal dynamics for different sensors; (2)
capture similar temporal dynamics of sensors that are along a
short segment of a road; and (3) distinguish sensors that are
nearby but have different temporal patterns.

We next study the sensitivity of the size of memories m in
Table IV. Using larger memories achieve only slightly smaller
average error values. Thus, parameter m is insensitive to the
final accuracy, making it easy to configure DFGN.
Accuracy enhancement on GRNN and GTCN: Table 12
reports the results on GRNN and GTCN. We observe that
D-GRNN and D-GTCN often get lower error values than GRNN
and GTCN do, especially for long term predictions where
temporal dynamics matters more.

2) Effectiveness of DAMGN: To verify the effectiveness of
the learned dynamic adjacency matrices, we investigate the
GRNN and GTCN models with/without using DAMGN.
Accuracy enhancement: The results are shown in Table II.
We also group results per data set first and then per model
family. Bold values suggest the lowest errors per data set and
underline values indicate the lowest errors per model family.

We can see that in all three data sets, DA-GRNN has smaller
errors than GRNN and DA-GTCN has smaller errors than
GTCN. This suggests that using dynamic adjacency matrix
helps the models better capture dynamic entity correlations,
which eventually improve prediction accuracy.

Next, we observe that when combining both DFGN and
DAMGN, it often achieves the best accuracy, especially for
the GRNN family.
Model complexity: The models with DAMGN have slightly
more parameters than the base models, as it introduces addi-
tional parameters to computer adjacency matrices B and C.
When using both DFGN and DAMGN together, the additional
parameters introduced by DAMGN becomes negligible. Since
DFGN reduces significantly the number of parameters, the
“D-DA-” models have much less parameters than the base
models.
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3rd timestamp 6th timestamp 12th timestampData Models MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE # Para

RNN 3.34 6.67 6.32 4.03 8.48 7.90 5.17 11.41 10.07 74k
D-RNN 3.28 6.52 6.18 3.90 8.20 7.62 4.83 10.76 9.44 49k

TCN 3.37 6.65 8.08 4.05 8.51 9.32 5.12 11.43 11.10 247kEB

D-TCN 3.30 6.45 7.78 3.89 8.05 8.91 4.76 10.41 10.43 100k
RNN 3.03 8.09 5.98 3.69 10.46 7.48 4.69 14.13 9.35 75k

D-RNN 2.89 7.79 5.73 3.36 9.70 6.94 3.90 12.03 8.24 49k
TCN 2.98 7.91 5.89 3.58 10.18 7.27 4.44 13.61 8.95 247kLA

D-TCN 2.85 7.59 5.67 3.29 9.37 6.82 3.79 11.41 8.02 103k
RNN 1.25 0.43 1.83 1.91 0.66 2.65 2.11 0.73 2.89 75k

D-RNN 1.25 0.43 1.83 1.90 0.65 2.65 2.14 0.74 2.95 32k
TCN 1.15 0.40 1.67 1.78 0.62 2.47 2.07 0.72 2.84 247kUS

D-TCN 1.12 0.39 1.63 1.70 0.59 2.37 1.99 0.69 2.75 104k

TABLE I: Effect of DFGN on capturing distinct temporal dynamics.

3rd timestamp 6th timestamp 12th timestampData Models MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE # Para

GRNN 3.20 6.41 5.96 3.68 7.75 7.11 4.35 9.42 8.52 371k
D-GRNN 3.17 6.34 5.88 3.59 7.57 6.94 4.15 8.96 8.15 167k
DA-GRNN 3.07 6.10 5.70 3.46 7.14 6.71 3.95 8.25 7.77 378k

D-DA-GRNN 3.05 6.09 5.67 3.40 7.12 6.57 3.83 8.17 7.53 172k
GTCN 3.15 6.18 7.46 3.60 7.44 8.33 4.21 8.86 9.39 288k

D-GTCN 3.17 6.22 7.47 3.58 7.37 8.25 4.15 8.77 9.24 252k
DA-GTCN 3.10 6.07 7.38 3.50 7.16 8.13 3.96 8.35 8.96 296k

EB

D-DA-GTCN 3.11 6.14 7.43 3.45 7.15 8.09 3.87 8.09 8.82 195k
GRNN 2.77 7.30 5.38 3.15 8.80 6.45 3.60 10.50 7.60 372k

D-GRNN 2.66 6.81 5.11 3.04 8.24 6.17 3.47 9.93 7.32 172k
DA-GRNN 2.67 6.86 5.17 3.06 8.27 6.25 3.49 9.86 7.38 381k

D-DA-GRNN 2.64 6.75 5.07 3.02 8.19 6.12 3.45 9.85 7.27 180k
GTCN 2.72 6.94 5.21 3.12 8.46 6.27 3.59 10.20 7.43 288k

D-GTCN 2.71 6.85 5.23 3.08 8.28 6.27 3.55 9.96 7.43 113k
DA-GTCN 2.71 7.00 5.12 3.08 8.44 6.20 3.53 10.06 7.25 297k

LA

D-DA-GTCN 2.69 6.93 5.14 3.06 8.29 6.19 3.49 9.96 7.23 261k
GRNN 0.89 0.30 1.32 1.28 0.44 1.84 1.56 0.54 2.22 226k

D-GRNN 0.92 0.31 1.36 1.30 0.45 1.89 1.57 0.54 2.23 96k
DA-GRNN 0.88 0.30 1.30 1.24 0.42 1.78 1.52 0.52 2.15 227k

D-DA-GRNN 0.88 0.30 1.29 1.23 0.42 1.75 1.50 0.52 2.13 97k
GTCN 0.90 0.31 1.33 1.30 0.45 1.86 1.58 0.55 2.24 272k

D-GTCN 0.91 0.31 1.35 1.29 0.45 1.85 1.59 0.55 2.24 111k
DA-GTCN 0.88 0.30 1.30 1.26 0.44 1.80 1.55 0.54 2.20 273k

US

D-DA-GTCN 0.86 0.30 1.27 1.22 0.42 1.74 1.53 0.53 2.15 156k

TABLE II: Effect of DFGN and DAMGN on capturing distinct temporal dynamics and entity correlations.

3rd timestamp 6th timestamp 12th timestampData Models MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
ARIMA 6.08 11.65 10.75 6.48 13.22 11.55 6.61 13.81 10.87

FC-LSTM 4.17 8.67 7.83 4.31 9.08 8.16 4.56 9.90 8.70
WaveNet 3.37 6.65 8.08 4.05 8.51 9.32 5.12 11.43 11.10

STGCN 4.37 8.45 10.83 4.81 9.67 11.48 5.56 11.82 12.53
Graph WaveNet 3.10 6.05 7.36 3.47 7.07 8.07 3.93 8.18 8.86

DCRNN 3.20 6.41 5.96 3.68 7.75 7.11 4.35 9.42 8.52
D-DA-GTCN 3.11 6.14 7.43 3.45 7.15 8.09 3.87 8.09 8.82

EB

D-DA-GRNN 3.05 6.04 5.67 3.40 7.05 6.57 3.83 8.17 7.53
ARIMA 3.99 9.60 8.21 5.15 12.70 10.45 6.90 17.40 13.23

FC-LSTM 3.44 9.60 6.30 3.77 10.90 7.23 4.37 13.20 8.69
WaveNet 2.99 8.04 5.89 3.59 10.25 7.28 4.45 13.62 8.93

STGCN 2.88 7.62 5.74 3.47 9.57 7.24 4.59 12.70 9.40
Graph WaveNet 2.69 6.90 5.15 3.07 8.37 6.22 3.53 10.01 7.37

DCRNN 2.77 7.30 5.38 3.15 8.80 6.45 3.60 10.50 7.59
D-DA-GTCN 2.69 6.93 5.14 3.06 8.29 6.19 3.49 9.96 7.23

LA

D-DA-GRNN 2.64 6.75 5.07 3.02 8.19 6.12 3.45 9.85 7.23
ARIMA 2.02 0.73 2.69 3.78 1.37 4.54 5.61 2.05 6.95

FC-LSTM 1.68 0.58 2.30 1.84 0.63 2.54 2.02 0.70 2.77
WaveNet 1.15 0.40 1.67 1.78 0.62 2.47 2.07 0.72 2.84

STGCN 1.74 0.60 2.31 1.94 0.68 2.58 2.03 0.71 2.69
Graph WaveNet 0.87 0.31 1.28 1.23 0.43 1.76 1.54 0.55 2.19

DCRNN 0.89 0.30 1.32 1.28 0.44 1.84 1.56 0.54 2.22
D-DA-GTCN 0.86 0.30 1.27 1.22 0.42 1.74 1.53 0.53 2.15

US

D-DA-GRNN 0.88 0.30 1.29 1.23 0.42 1.75 1.50 0.52 2.13

TABLE III: Comparison with baselines and state-of-the-art methods.
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Fig. 10: Entity memories, D-TCN, LA. Fig. 11: Entity locations, LA.

m MAE MAPE RMSE
8 4.05 10.19 8.28
16 4.04 10.15 8.22
18 4.04 10.11 8.20
32 4.03 10.10 8.18

TABLE IV: Sensitivity of m, D-TCN.

Adjacency Matrices Learned from DAMGN: We take a
closer look at the learned adjacency matrices B and C. Specif-
ically, we select 20 sensors and examine their corresponding
matrices B and C learned from DA-TCN in Figure 12.

First, we compare A and B. Recall that A is derived based
on distances and is static. The learned matrix B is also static,
but is learned from additional memory matrices B2 and B2

(cf. Section V-B). The two matrices are different—see the
highlighted cells. This indicates that distance based adjacency
matrix may not fully capture entity correlations.

Second, we compare the C matrix at two different times-
tamps since it is dynamic. We observe that the two matrices
are very different. In the first timestamp, sensor 19 has some
correlations with sensors 6 to 12 (see the red rectangles), while
in the second timestamp, sensor 19 is not correlated with
them anymore. In the second timestamp, sensor 2 is heavily
correlated with sensors 5 to 10 (see the blue rectangles), while
in the first timestamp, there are almost no correlations. This
confirms that static adjacency matrix is insufficient as entity
correlations are dynamic.

(a) Matrix A. (b) Matrix B.

(c) Matrix C at two different timestamps.

Fig. 12: Learned adjacency matrices, DA-TCN, LA.

3) Comparisons with Baselines: We compare the best two
models D-DA-GRNN and D-DA-GTCN from our proposals

with multiple methods, including the state-of-the-art of the
RNN and TCN families—DCRNN and Graph WaveNet.

The results are shown in Table III. We observe that
all deep learning methods performs better then non-deep
learning baselines such as ARIMA, since the temporal dy-
namics are highly non-linear. In addition we can see that
combining DFGN and DAMGN offers a significant accu-
racy improvement, since either D-DA-GTCN or D-DA-GRNN
achieves the best accuracy on all three data sets. We also
observe that D-DA-GRNN performs better than D-DA-GTCN.
D-DA-GRNN outperforms the state-of-the-art method Graph
WaveNet, while D-DA-GTCN sometimes falls behind Graph
WaveNet. Next, we perform the t-tests to test the signifi-
cance of the proposed models D-DA-GRNN and D-DA-GTCN
compared to the state-of-the-art methods DCRNN and Graph
WaveNet. The p-values are less than 0.01 for all three datasets
when using all three error metrics. This provides a strong
evidence that the proposed models statistically outperforms
the state-of-the-art methods.

4) Runtime: We study runtime for both offline training
and online predictions in Table V. For training, we report
average runtime (seconds) per epoch in the “T (s)” column.
For predictions, we report the average runtime (milliseconds)
for making a prediction for the next 12 timestamps in the “P
(ms)” column.
Training runtime: Using DFGN increases the runtime. This
is not surprising as each training iteration has to go through the
additional DFGN for generating the entity specific filters. The
run-time increase on D-TCN is larger than that on D-RNN
because D-TCN maintains multiple DFGNs, one for each
dilation convolution layer whereas D-RNN maintains only one.

Using DAMGN only increase slightly the runtime, due to
its light design in Equations 15 and 16, with only a few more
matrix multiplications.
Prediction runtime: In the prediction phase, we do not
need to use DFGN anymore as the dynamic filters are already
identified in the training phase. Thus, the runtime of the “D-”
models is very similar to their base models. Although DAMGN
is still needed to generate dynamic adjacency matrix C based
on the input time series, the computation in DAMGN (cf.
Equation 16) is light. Thus, the runtime of the “DA-” models
is also similar to their base models. Thus, we conclude that
the use of DFGN and DAMGN does not affect the usability
in real-time predictions.
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EB LA USModels T (s) P (ms) T (s) P (ms) T (s) P (ms)
RNN 17.4 0.31 25.5 0.35 25.9 0.29
D-RNN 24.8 0.31 36.1 0.33 34.6 0.29
TCN 21.8 0.33 33.6 0.16 14.4 0.28
D-TCN 76.7 0.23 108.7 0.27 46.1 0.23
GRNN 54.4 1.31 88.1 1.59 50.2 0.60
D-GRNN 74.4 0.95 115.7 1.18 59.1 0.57
DA-GRNN 66.0 1.35 106.9 1.51 50.8 0.60
D-DA-GRNN 82.6 0.90 129.5 1.10 60.5 0.52
GTCN 29.8 0.25 45.9 0.29 17.6 0,18
D-GTCN 77.7 0.27 131.3 0.33 50.3 0,19
DA-GTCN 34.7 0.27 53.6 0.32 19.6 0.19
D-DA-GTCN 85.0 0.29 129.6 0.32 51.7 0.20

TABLE V: Runtime.

5) Summary: Based on both the accuracy and runtime
studies, we make the following recommendations. First, if
training time is critical, we should only use DAMGN, which
has a similar training runtime with the base models and also
provides good accuracy enhancement. Second, if training time
is not critical, we recommend use both DFGN and DAMGN,
which gives the largest accuracy enhancement.

VII. CONCLUSION AND OUTLOOK

We present a framework with two plugin networks—
Distinct Filter Generation Network DFGN and Dynamic
Adjacency Matrix Generation Network DAMGN, which can
be employed to enhance the accuracy of many time series
forecasting models. This is due to the two plugin networks
are able to capture distinct temporal dynamics among entities
and dynamic entity correlations, which existing models fail to
capture. In addition, the two plugin networks are also able
to reduce the total number of parameters. In future work,
it is of interest to integrate with CPSs such as intelligent
transportation systems [26], [33].
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